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Abstract. A variational approximation to a renormalisation group transformation involves 
a sequential selection of the variational parameters. We show that this problem is 
equivalent to a discrete-time optimal control problem. The application of ideas and 
techniques from control theory, such as dynamic programming and the Pontryagin 
maximum principle, are discussed, together with some of the basic problems posed by 
variational approximations. In particular, the Kadanoff criterion for determining the ‘best’ 
approximation to the fixed point is re-derived in a way which illustrates the basic underlying 
assumptions. An alternative criterion, which avoids the problems and inconsistencies of the 
Kadanoff criterion, is advanced. 

1. Introduction 

The possibility of developing variational approximations to real-space renormalisation 
group transformations was originally suggested by Kadanoff (1975). The basic idea 
behind Kadanoff’s approach lies in the use of approximate recursion relations, which 
yield either an upper or lower bound to the exact free energy. An optimum bound can 
then be obtained by varying any free parameters in the basic renormalisation group 
transformation. Whilst there is, of course, no guarantee that any such bound need be 
particularly close to the exact free energy, this procedure does give an objective 
criterion for choosing a ‘best’ transformation from a class of transformations treated 
within a specified approximation. 

In practice, Kadanoff (1975) obtained remarkably accurate estimates for the critical 
exponents of Ising systems on d-dimensional hypercubic lattices (d = 2, 3, 4) from a 
simple optimized lower bound approximation-the so-called one hypercube approxi- 
mation. Subsequently, Kadanoff et a1 (1976) extended this calculation to compute the 
specific heat and spontaneous magnetisation of the two-dimensional Ising model and 
found excellent agreement with the known analytic results. In addition, they applied 
the approximation to the transformation of Bell and Wilson (1974) of a generalised 
Gaussian model (continuous spin model with s4-weight factor) in 4 - E  dimensions. To 
first order in E ,  the optimum transformation gave critical exponents in agreement with 
those obtained from conventional E -expansions (Wilson and Fisher 1972, Wilson 
1972). More recently, the Kadanoff lower bound approximation has been applied to 
more complex systems (Burkhardt 1976a, Burkhardt and Swendsen 1976, Burkhardt et 
a1 1976, Dasgupta 1976, Ashley and Green 1976). In almost all cases, the approxima- 
tion yielded results which compared very favourably with those obtained by alternative 
renormalisation group calculations and/or more conventional methods. 
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1722 M N Barber 

These successes suggest that the method of optimised bounds is an extremely 
powerful and accurate approximation to renormalisation group transformations. How- 
ever, the reasons for this success are far from clear. Indeed, several questions need to be 
resolved before this approach can be fully assessed and its results accepted without 
reservation. 

Firstly, there is evidence (Plischke and Austin unpublished, Barber 1977c) which 
suggests that the Kadanoff approximation is not nearly so successful when applied to 
two-dimensional lattices other than the square. This raises the question of what 
characteristics are required of an approximation and/or transformation to give good 
results. 

Secondly, as stressed by Kadanoff et a1 (1976), a good bound on the free energy does 
not imply that the derivatives of the free energy should be approximated at all well by 
the derivatives of the bound, Yet, it is the behaviour of these derivatives which is 
characterised by the critical exponents. Thus one would like to know if Kadanoff’s 
results are fortuitous or does the use of renormalisation group techniques somehow 
ensure, in general, that a good bound to the exact free energy also reproduces the 
singular behaviour of the derivatives of the free energy? To explore this question, we 
have elsewhere (Barber 1977a) constructed a simple upper bound approximation for 
which the optimal transformation could be determined analytically. This optimal 
transformation, which is equivalent to a site-cell transformation of the form introduced 
by Niemeijer and van Leeuwen (1973, 1974), again yielded quite accurate exponents 
for the Ising model on the square lattice but less accurate on other lattices. 

More significantly, it was found that the criterion proposed by Kadanoff (1975) to 
determine the ‘best’ fixed point out of the set admitted by the approximate recursion 
relations failed. This criterion, which is discussed in more detail in § 5, had already been 
called into question by Burkhardt (1976b). In particular, Burkhardt showed that the 
fixed point located by Kadanoff (1975) possesses a third relevant eigenvalue and is 
approached only by a special class of Hamiltonians. This class does not include the 
conventionai nearest-neighbour Ising model on the square lattice unless a decimation 
transformation (Kadanoff and Houghton 1975, Sneddon and Barber 1977) is first 
performed. The approximate recursion relations of the lower bound transformation do 
however possess an additional fixed point with a two-dimensional critical surface. 
Presumably it is to this fixed point that the critical Ising model flows under iteration. 
Unfortunately, the critical exponents (particularly v )  associated with this point are not 
as accurate as those of the original Yoint found by Kadanoff. 

A resolution of these difficulties and a more complete assessment of the successes of 
the variational approach, requires a more detailed investigation of the underlying 
combination of renormalisation group and variational techniques. This is our aim in 
this series of papers. In this present paper we focus attention on the basic mathematical 
question: how should the variational parameter(s) be chosen at each iteration of the 
recursion relation, to ensure that the resulting bound on the free energy (defined as a 
sum over a renormalisation group trajectory) is optimum? We shall see that this 
problem is very similar to problems which arise in operations research. Consequently 
many of the powerful techniques of mcdern control theory, such as dynamic program- 
ming or the Pontryagin maximum principle can be fruitfully applied. 

Our detailed arguments are arranged as follows. In § 2 we briefly review the 
calculation of free energies by renormalisation group techniques and formulate the 
variational principle. Sections 3 and 4 are devoted to a general treatment of the 
optimisation problem using techniques from control theory. In § 5 we discuss the 
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determination of the 'best' fixed point and amplify the remarks made above concerning 
the Kadanoff criterion. The application of these ideas to the Kadanoff lower bound 
transformation is discussed in a subsequent paper. 

2. Formulation of variational principle 

The calculation of free energies by renormalisation group techniques has been discus- 
sed by several authors (see e.g. Nauenberg and Nienhuis 1974, Niemeijer and van 
Leeuwen 1976, van Leeuwen 1975, Kadanoff et a1 1976). We begin this section by 
briefly reviewing this theory. 

Let H { v }  denote the Hamiltonian of the system of interest, which we assume to be 
specified by a set {U} of N degrees of freedom or statistical variables. Now consider a 
transformation of H of the form: 

exp(-Ng +W{P})  = T~,F{cL, a )  exp(H{d), (2.1) 

where the trace is over all states of the system. The new or renormalised Hamiltonian 
H describes a system of N' = N/bd degrees of freedom specified by the set { p } .  The 
parameter b is the spatial re-scaling factor and exceeds unity. Equation (2.1) defines a 
renormalisation group transformation if H'{k}  possess the same symmetries as H { v }  
and 

Tr,F{p, a} = 1. (2.2) 
We shall refer to F{p, v} as the transformution matrix. The choice of F{@, v} is to a 
large extent arbitrary, although we shall assume that it is non-linear in the new variables 
IF}, and thus defines a non-linear renormalisation group in the sense of Bell and Wilson 
(1974). Finally the function g = g(H) is the constant term, i.e. independent of the 
degrees of freedom, which is generated by the trace over {v}. (Without loss of 
generality, we can assume that the total energy is shifted, so that the corresponding term 
in the original Hamiltonian vanishes.) 

Formally, we can write (2.1) as a (non-linear) map on the space of Hamiltonians, 
namely 

H' = R&. (2.3) 
The condition (2.2) then ensures that the free energy per degree of freedom 

1 
f ( H )  = lim (- - In Tr, exp(H{a})) . 

N + m  iv 
(2.4) 

satisfies 

Iterating this result n times yields 

f ( H )  = k1 b-'dg(Hl)+ b-"df(H,). 
I=O 

The sequence  HI};=^ is generated by successive applications of the recursion operator 
Rib, i.e. 

HI = R&'-1, Ho 3 H, (2.7) 
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and terminates when H,, is such that f(Hn) can be readily and accurately evaluated 
directly from the definition (2.4) by some suitable approximation. In practice, for 
almost all initial Hamiltonian H, the sequence {HI} tends either to a strong-coupling 
(low temperature) fixed point or to a weak-coupling (high temperature) fixed point. The 
exceptions occur when Hlies  on the critical surface of a non-trivial fixed point H* of [Wb. 

The corresponding limiting free energy f(H*) follows immediately from (2.5), namely 

f(H*)= (1 - b-d)-’g(H*). (2.8) 

This approach to the evaluation of free energies has been carried through exactly for 
the one-dimensional Ising model (Nelson and Fisher 1975, Nauenberg 1975, Priest 
1975), the one-dimensional classical Heisenberg model (Niemeijer and Ruijgrok 1975) 
and approximately for the two-dimensional Ising model (Nauenberg and Nienhuis 
1974, Nienhuis and Nauenberg 1975). The basic problem is the evaluation of (2.1) and 
the determination of an explicit representation (usually as a finite set of non-linear 
difference equations) of the recursion operator [ W b .  Knowledge of [wb is, of course, also 
necessary for the determination of the type and nature of the critical points of the 
system of interest; this information following from the fixed points of (2.3). (For recent 
reviews of renormalisation group theory and techniques see Wilson and Kogut (1974), 
Fisher (1974), Niemeijer and van Leeuwen (1976), and Barber (1977b).) 

Unfortunately, it appears that is only possible to derive an exact representation of Rb 
for some one-dimensional examples (see e.g. Nelson and Fisher 1975, Nauenberg 
1975,NiemeijerandRuijgrok 1975). Thus one is forced to evaluate the trace in (2.1) by 
some approximate procedure?. The various approximations used to date have been 
reviewed recently by Niemeijer and van Leeuwen (1976). Although these methods 
have yielded quite accurate results when applied to the two-dimensional Ising model, 
they do suffer from several serious weaknesses and disadvantages due to their ad hoc 
and unsystematic nature, In particular, physical quantities such as critical exponents 
depend upon the choice of F{p, (T}. On the other hand, the analysis of Bell and Wilson 
(1974) for the Gaussian model, suggests that the physical consequences of an exact 
treatment of (2.1) would be independent of .T at least for ‘reasonable’ choices. It is 
primarily this problem that a variational approximation attempts to overcome by giving 
an objective criterion for the ‘best’ choice of the transformation matrix. 

To be more specific, we assume that the allowable choices (for fixed spatial 
re-scaling factor) of Y{p, (T} can be parametrised by a set of t parameters p and let 
[Wf(p) denote the approximate recursion operator obtained from (2.1) by some method. 
(For particular examples see Kadanoff et a1 1976, Barber 1977a.) This approximation 
is required to have the property that either 

or 

where 

t We are only interested in non-linear real-space renormalisation groups for which the spatial ( d )  and spin (n) 
dimensionalities are fixed. Hence systematic expansions in = 4 - d or l / n  which yield exact recursion 
relations are inapplicable. 
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and gA(H; p )  is the appropriate constant term arising in the approximate evaluation of 

The best choice of 9 { p ,  c}, specified by p = pt, can be determined by adjusting the 
parameters p variationally to yield the optimum bound in (2.9) or (2.10). Explicitly, in 
the case of an upper bound approximation, we have 

(2.1). 

(2.12) 

with pt  that value of p for which the minimum is attained. 
Since (2.12) involves an optimisation over the unknown exact free energy functional 

f(. ), it is not particularly useful as it stands, To eliminate f i t  is necessary to iterate, as in 
the derivation of (2.6), to yield 

~ ( H ) & ~ A ( H )  = min(x l  6-ldgA(Hf; p > +  b - n d f ( ~ : ) ) .  (2.13) 
P I = O  

The sequence {H;”}y=o is now generated by Rt(p), i.e. 

H;9 = Rt(p)HP_I, H+H (2.14) 

and is to terminate when H: is such that f(H:) can be directly evaluated from (2.4). 
In writing (2.13) we have tacitly assumed that the optimal transformation of H is 

independent of H. In general, this need not be the case. (It is not, for example, in the 
Kadanoff lower bound approximation.) Thus the least upper bound to f(H) is given not 
by (2.13) but by 

f ( H ) s f ~ ( H ) =  min 6-’dgp,(Hf; p , + l ) + b - n d f ( H t ) ) ,  (2.15) 
{e,* .  . . . P,)  l=O 

where pk denotes the choice of the variational parameters at stage k, i.e. 

fe = IWapk)H;-l, H: = H. (2.16) 

Clearly the evaluation of fA(H)  for arbitrary H will be rather non-trivial since it 
involves a multi-dimensional optimisation. The simplification of this optimisation is a 
major aim of the following sections. Before turning to this analysis it is useful to ask if 
the variational parameters p are expected to be subject to any constraints. A detailed 
answer to this question depends upon the specific approximation. However, all 
variational approximations developed to date have relied on Jensen’s inequality (see 
e.g. Beckenbach and Bellman 1961). This demands that T { p ,  U} be non-negative and 
hence p must be chosen to fulfil this condition. Thus, in the following, it should be kept 
in mind that the components of p may be subject to certain constraints. The existence of 
constraints has one important consequence. Namely, changes in p from the optimal 
value pt need not yield changes in ~ A ( H )  which are second order in p -pt. This point, 
and some of its implications, will be discussed further in 5 5 .  

3. Bellman equation for fA(H) 

According to (2.15), the evaluation of the optimum bound fA(H) to the exact free 
energy f ( H )  for a given Hamiltonian H involves a multi-dimensional optimisation over 
n vector parameters p1, . . . , pn. If n is small and the recursion relations relatively easy 
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to compute, the required optimum can probably be found by a direct numerical search?. 
However, this method becomes less feasible near criticality, where n will be reasonably 
large. In addition, such a direct search makes no use of the sequential nature of (2.15) 
and thus gives little insight into the basic mechanisms of the approximation. 

Equation (2.15) has two rather significant and simplifying features. Firstly, the 
parameters p l  are to be chosen sequentially at each stage of the iteration process. 
Secondly the function to be optimised consists of a sum of terms, one for each stage of 
the iteration and each term depending upon a different set of variational parameters. 
Dynamic programming, developed in the 1950's by Richard Bellman, is explicitly 
designed to handle such sequential decision processes. In this section we apply the idea 
of dynamic programming to obtain a simpler equation forfA(H&the so called Bellman 
equation. An elementary introduction to dynamic programming has been given by 
Bellman and Kalaba (1965), while more advanced treatments are contained in Bellman 
(1957) and Bellman and Dreyfus (1962). 

It is convenient, at this stage to modify our notation somewhat. In the usual way, we 
parametrise the hamiltonians Hf by appropriate sets of coupling constants, which we 
shall regard as s-dimensional vectors KI = (K: ,  K:, . . . , Kf) .  The value of s is set by the 
specific approximation. The recursion relation (2.14) then becomes a set of s first-order 
difference equations which we write as 

K' = R ( K ;  p ) .  (3.1) 

With these changes, the basic result (2.15) becomes 

where 

and we have dropped the subscript A on the function g.  In the language of control 
theory, K is the state-uector, p is the control, while the expression in parenthesis in (3.2) 
is referred to as the objective criterion. We shall, however, continue to use the more 
conventional terminology of statistical mechanics. 

To derive the Bellman equation, we separate out the terms in (3.2) which depend 
upon pl.  Explicitly we can write 

where 

(3.4) 

We observe that F only depends upon p1 through K l = R ( K ; p l ) .  Thus if K1 is 
considered to be fixed when the minimization in (3.5) is performed, it immediately 
follows that 

P = b-df.4(K1). (3.6) 

t This was the procedure adopted by Kadanoff et a1 (1976). 
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Substituting this result into (3.4) yields 

~ A ( K )  -- min(g(K; PI+ b - d f A ( ~ ( K ;  PI), (3.7) 

which is the required equation. Note that its derivation depends crucially on the 
sequential nature of (3.2). The corresponding equation for a lower bound approxima- 
tion follows similarly, namely 

~ A ( K )  = max(g(K; PI+  b-YA(R(K; PI)). (3.8) 

In both (3.7) and (3.8) the indicated optimisation is, of course, to be performed subject 
to any constraints. 

Although (3.7) is a considerable simplification, in form at least, over (3.2), it has 
computational limitations due to its functional equation nature. Unless the dimension- 
ality (s) of the space of coupling constants is small, it becomes impossible to solve (3.7) 
or (3.8) by any iterative procedure because of storage problems. Bellman and Kabala 
(1965) have termed this problem the ‘curse of dimensionality’ and it has limited the 
applicability of dynamic programming. Although, most approximations to renormal- 
isation groups involve too many coupling constants to allow (3.7) or (3.8) to be directly 
applicable to the variational problem, these equations are, nevertheless, useful. For 
example, (3.8) can be readily used to show that the Kadanoff lower bound approxima- 
tion is exact in one dimension (Barber 1977~) .  

4. Derivation of a Pontryagin maximum principle 

To overcome the limitations of dynamic programming, we turn .to an alternative 
approach to control theory, which has developed from the work of Pontryagin in the 
USSR. The essential feature of this formulation lies in the derivation of a so called 
Pontryagin maximum principle which determines the optimal control (i.e. the optimal 
choice of variational parameters). Pontryagin’s original treatment (Pontryagin et a1 
1962) is applicable to continuous time processes. The extension to discrete-time 
processes, which are of relevance here, has been discussed by several authors; notably 
in an intuitive and heuristic way by Fan and Wang (1964) and more rigorously by 
Boltyanskii (1974). The derivation we give in this section follows the spirit of a 
simplified derivation given recently by Blatt (unpublished) for the continuous time case. 

Our starting point is again (3.2) and (3.3). Let 

(4.1) 

We wish to minimise J over (PI, . . . p n }  where 

KI = RW-1; PI) (4.2) 
with KO specified and K,, considered to be free. The parameters pi at each stage are 
assumed to be drawn from some set i2 which incorporates any constraints. 

To perform this minimisation, we introduce Lagrange multipliers hr, 1 = 1, . . . n, and 
consider the Lagrangian 
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The fundamental theorem of Lagrange multipliers (see e.g. Luenberger 1973) now 
asserts that minimising J is equivalent to minimising .Y with respect to Kf and p f  
(I = 1, . . . n )  treated as independent variables. 

Variations with respect to the components of Kf are straightforward. The necessary 
condition 

yields an equation for Al. Explicitly we find, on differentiating (4.5), that 

with 

(4.7) 

These equations will be referred to as the co-state equations. Note also that the 
recursion relations (4.2) follow from nf as 

a 
ah KP=yl-L(&-i,  P I ,  A i ) .  (4.9) 

Turning now to variations in P I ,  we find on the assumption that 2 is differentiable 
with respect to p ,  that a necessary condition for optimality is 

(4.10) 

Thus p :  is determined by the condition that the Pontryagin function II,(pl) at stage 1 be 
extrema1 at pf = p : .  However if the parameters pl are constrained, the solution of (4.10) 
may violate the constraints and hence be inadmissible. To cover this possibility, one 
must argue rather differently. In doing so, we can, in fact, establish the stronger result 
that at optimality, I l l  is a maximum with respect to pf. 

Le; p i ,  p i ,  . . . , p', denote the optimal choice of variational parameters and 
KO, K1, K 2 ,  . . . , KL, the corresponding sequence of coupling constants. Now consider 
the sub-optimal choice 

(4.11) 

where we assume that pk can be chosen (subject to any constraints) to make & arbitrarily 
small. This assumption is valid if the set, R, of allowed values of the variational 
parameters p, is continuous and directionally convex as is the case in renormalisation 
group calculations. 

+ In control theory II, is usually denoted Ht and called the (Pontryagin) Hamiltonian. We have chosen the 
alternative notation to avoid confusion with the conventional Hamiltonian of statistical mechanics. 

i t  t t 
e17 p2, . * . 9 P k - 1 ,  Pk =pL+&* P:+1$ . . . > P n .  
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The new sequence of coupling constants is 

OGlGk-1 

Kl = R(KL1; P : + 5 )  i = k  

[ z K l - 1 ;  p:) k + 1 s l s n ,  

Provided R is differentiable with respect to p we have 

Kk =K:+O(&)  

(4.12) 

(4.13) 

and hence by induction 

SKI = KL - K:  = O(5) (4.14) 

for all 1s k.  Turning to the co-state equation (4.7), we observe from (4.8) and (4.14) 
that 

(4.15) SA, = A,, - A = o(6) 
and hence on iterating (4.7) backwards we conclude that 

 SA^ = A [  - A ;  = o(&), 1 s l G n .  (4.16) 

We are now in a position to compute the difference between the values of the 
Lagrangian (4.5) calculated using the optimal choice of the p's  and that obtained from 
(4.1 1). We write 

9-2"= (A1.Ki-A: .K:-nL(Kl-l ,p:,A~)+nl(K:-l ,p:,A:)) 
I = 1  
i#k 

+ A k a  Kk -A: - K:-nk(K:-i,Pk, Ak)+nk(Ktk-i, P i ,  A:) 
+ b-"d(f(~n)-f(Kt,)). (4.17) 

From (4.7), (4.9) and the estimates (4.14), (4.16)' we have 
ni(Ki-i,pl, A~)-nl (K:- l ,p: ,A~)=A~- l .  SKI-l+K:. 6Ai+0(t2),  (4.18) 

where by 0(t2) we include any term quadratic in the components of 6. Similarly 

(4.19) 

(4.20) 
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and hence we finally obtain 

2 - 2+ = I l k  (KL-1, p: ,  A :) - r I k  (KL-1, P k ,  h :) + o(g2). (4.24) 

However, by assumption 9' is less than 9. Thus for sufficiently small variations (in SZ) 
of P k  from optimality, we conclude that 

(4.25) 

This result is the Pontryagin maximum principle. 
The extension to the case of a lower bound approximation is most easily obtained by 

negating the function g (i.e. we minimise -f). The co-state equations (4.7) and the 
maximum principle (4.19) remain valid with the Pontryagin function now defined as 

(4.26) 

Several comments are now appropriate. Firstly, it should be noted that the 
maximum principle is only a necessary condition for optimality. In addition, we have 
not established the existence or uniqueness of the optimal choice of the variational 
parameters. These questions are however not of great concern in the application of 
these ideas to renormalisation group approximations. Of more importance is the 
possibility of actually solving the Pontryagin equations, which consist of (4.2), (4.7) and 
(4.25). 

The derivation of the maximum principle, given above, tacitly assumes that the 
number of iterations n is fixed and K,, is free. Actually, n is determined by the condition 
that K,, is non-critical in the sense that f(K,,)  can be evaluated directly from the 
definition (2.4) (see the discussion after (2.7)). Consequently, A,, defined by (4.8)can be 
considered to be known and thus& determined by iterating (4.7) backwards. However, 
this procedure is somewhat cumbersome to implement. Instead it seems sufficient to 
choose a fixed value of n sufficiently large to allow A:  to be taken as zero. An estimate 
of this value of n can be obtained as follows. Differentiating (2.4) yields 

-(l-l)d n , = A l . R ( K i - i ; ~ ~ ) + b  g(Ki-i;PO- 

(4.27) 

where the angular brackets denote an ensemble average. We now assume that K" 
denotes the coupling between a sub-set of the degrees of freedom, denoted a, and 
appears in H in the form: 

(4.28) 

where the sum runs over all embeddings of a in the complete set { ~ i }  and mi," is a 
positive integer. Hence 

A: = (4.29) 
where c, is a numerical constant which counts the number of embeddings of a per 
degree of freedom. To proceed requires a more detailed specification of the system. For 
an Ising model (ai = *l, i = 1, . . . , N ) ,  we immediately have 

IA :I G (4.30) 

A similar bound follows if we assume the cri and hence Sa are bounded. Although we 
have not explored the possibility of applying these results to continuous spin systems 
( - -o~<c r~<oO) ,  we note that Ruelle (1976) has recently proved that (Sa) is bounded for 



Variational approximations to renormalisation groups 1731 

such systems. In general, it therefore appears that A E tends to zero exponentially as n 
tends to infinity. In practice, it is thus sufficient to fix n at say 15-25 and assume A E to be 
identically zero. This approach has been used to successively solve the Pontryagin 
equations for the KadanofT lower bound approximation (Barber and Kelley 1977). 

5. Fixed point criteria 

The preceding two sections have concerned the optimisation problem posed by (2.15). 
However, the actual evaluation of fA(H)  for arbitrary H i s  often of little interest. Rather 
we require the fixed points and related scaling fields and exponents of the optimal 
transformation. The question arises as to whether or not this information can be 
obtained without recourse to the full computation of ~ A ( H ) .  

Kadanoff (1975) suggested that this was possible and proposed a simple criterion to 
determine the 'best' fixed point. To derive the Kadanoff criterion it is necessary to 
make two assumptions: 
(i) Given KO = K, we assume that the subsequent optimal sequence of coupling 

constants {K:} is generated by a constant fixed value of the variational parameter 
vector, say p' = p + ( ~ ) .  

(ii) Either p is assumed to be unconstrained or if it is constrained to some set R, we 
assume that the optimal choice p' corresponds to an internal optimum. 

Explicitly this second assumption means that if p is subject to any inequality constraints 
then p' must satisfy these constraints with strict inequality. 

Let 

i=o 

with 

and define 

where 'opt' denotes a maximisation or minimisation as is appropriate. Note that G*(K) 
will not, in general, equal the bound fA(K) given by (2.15), since p i  is, in general, not 
constant for all 1. For an upper bound approximation we have 

$A(K) fA(K) f(K), (5.4) 
where f ( K )  is the exact free energy, while the inequalities in (5.4) are reversed for a 
lower bound approximation. 

The second of Kadanoff's assumptions now allows us to assert that GA(K) corres- 
ponds to a stationary point of $(K, p )  with respect to variations in p from pt. Explicitly 
we have 

A* = gl/K Pt  + 6P)- 4(K P') = 0((W2). 

If? = R(P; p'). (5.6) 

( 5 . 5 )  
This result is valid for all K ;  in particular it is required to be true for the fixed point 
K* = K*(pf), which satisfies 
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Thus (5.5) gives a criterion for selecting a 'best' fixed point from the set {K*(p ) }  of 
fixed points admitted by the approximate recursion relations for arbitrary value of p .  

If 

p + =  Lo;, p : ,  * . . , p : > ,  

(agldp,,,)" + (dg/aK)* . (bdI-  T)-' . (aR/ap,)* = 0, 

(5.7) 

( 5 . 8 )  

Tap = (aRa/aKP)* a = l )  . . .  , s ; P = l , . . . ,  s. (5.9) 

then we show in the appendix that p L  satisfies 

m = 1 , .  . . , t, 

where I is the s-dimensional unit matrix and the matrix T has components 

The asterisk in (5.8) and (5.9) indicates that the derivatives are to be evaluated at 
K=K*(pt) and p = p t .  Equation (5.8) is the Kadanoff criterion (Kadanoff 1975, 
Kadanoff etal  1976). 

The criterion has formed the basis of all the highly successful applications of the 
Kadanoff lower bound approximations cited in 0 1. For example, for the two- 
dimensional Ising model on the square lattice, it leads to the estimates (Kadanoff 1975) 

S = 15.04, Y = 0.9991, (5.10) 

which compare very favourably with the exact value of 15 and 1 respectively. As 
mentioned in 0 1 there are, however, several problems associated with this procedure. 

Firstly, Barber (1977a) has constructed a class of upper bound approximations for 
which the criterion fails. This failure is a consequence of the optimal transformation 
satisfying an inequality constraint with equality. Thus assumption (ii) is invalid. 

Secondly, the criterion gives no grounds to select between multiple solutions of 
(5.8). Since (5.6) is a set of non-linear equations, it can very easily possess more than 
one fixed point K* for a particular value of p .  Burkhardt (1976b) and Knops (1977) 
have shown that this problem actually arises in the Kadanoff lower bound approxima- 
tion; the criterion (5.8) giving three possible 'optimal' fixed points with different values 
of the critical exponents. 

Thirdly, there is the inconsistency noted by Kadanoff etal (1976), which arises when 
the recursion operator is linearised about the fixed point with p fixed at the fixed point 
value pt. Knops (1977) has recently discussed this problem on the basis of a simple 
linear treatment of the correction terms and found that the values of the critical 
exponents change rather significantly. The effect appears to be so large as to call into 
question the assumption, made by Knops, that a linear analysis is sufficient. 

Finally, there is the fundamental problem associated with the first assumption of the 
Kadanoff criterion. Since Kadanoff et a1 (1976) have show that significantly better 
results are obtained for thermodynamic functions if the variational parameters are 
allowed to vary along a flow trajectory, it appears that this assumption is very stringent. 

The only way that these problems can be resolved is by a more detailed computation 
of optimal parameters for at least a subset of initial Hamiltonians. Hence we are led 
back to the optimisation problem posed by (2.15). This problem has, however, been 
considerably simplified by the analysis of the two preceding sections. In particular, the 
Pontryagin maximum principle of 0 4 can be used to rapidly, accurately and unambigu - 
ously determine the critical temperature and related fixed point of physical Hamilto- 
nians. Details of this calculation for the Kadanoff approximation will be published 
elsewhere (Barber and Kelley 1977). Here we describe the salient features and how 
they resolve, in general, the difficulties of the Kadanoff criterion. 
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We consider first the determination of the best fixed point. Let Z* denote the set 

(5.11) 

Then for each (K, p ) ~  Z*, the function $(K, p )  defined by (5.1) is trivial to evaluate: 

z* = {(K, p)lK= N K ;  p)) .  

$(K, p )  = (1 - b-d>-'g(Kt P ) ,  (K, P I E  z*. 
By assumption the 'best' fixed point (P,  p ') must remain invariant under iteration. 
Thus the optimal choice of variational parameters, given KO = K*, but only this point, is 
invariant. Hence we require 

$(K*, p ' )=f*(K*)  (5.12) 

where fA(K*) is the optimal bound given by (2.15) (or its obvious analogue for a lower 
bound approximation) with KO = K*. Note that this new criterion does not make any 
assumption concerning the behaviour of $(K, p )  near p'. Hence unlike the Kadanoff 
criterion, it is applicable if p' is a boundary optima. In the case of the upper bound 
approximations of Barber (1977a), one can show that (5.12) yields the exact optimal 
transformations. 

Equation (5.12) may still and, in general, probably will, admit multiple pairs (K, p )  
from Z*. To select the physically relevant point requires some knowledge of the critical 
surface or the domains of attraction of the solutions of (5.12). In practice, it is easier to 
select a series of initial Hamiltonians KO in the physical sub-space of the full Hamilto- 
nian space and compute the optimal flow trajectories. This calculation yields both the 
critical parameters (e.g. critical temperature) of the physical Hamiltonians of interest 
and the related fixed point without ambiguity. 

It is worth emphasising that any fixed point of a recursion operator is only of physical 
relevance if the point in question is accessible from the physical sub-space. This aspect 
is often overlooked in renormalisation group calculations but appears to be of consider- 
able importance in interpreting variational approximations. 

Once the appropriate fixed point pair (K*, p' )  in Z* has been located, the required 
linear transformation can be obtained quite consistently as follows. Choose an initial 
set of coupling constants 

KO = ( K f ,  Kg, . . . , KZ-', KZ+AK, KZ- l , .  . . , KT). (5.13) 

Calculate fA(Ko)  and let K1 be the first (after KO) of the optimal sequence of coupling 
parameters. Then the required representation of the linear recursion operator near K* 
is approximated by 

Tm = (Ki,, - KT)/AK. (5.14) 

In practice, it is better to consider both negative and positive variations of KZ in (5.13) 
as this minimises the effects of uncertainty in the determination of K*. Preliminary 
calculations along these lines, indicate that errors associated with neglecting the 
variation in p t  and fixing it at its fixed point value are somewhat smaller than found by 
Knops (1977). 

Of course, the whole of the procedure outlined above is only feasible if the 
optimisation problem posed by (2.15) can be solved rapidly and accurately even near the 
fixedpoint for which the number of iterations n is relatively large. The analysis of this 
paper, particularly 0 4, makes this possible. Indeed, the amount of computer time 
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required is not much more than required to compute the Kadanoff criterion (5.8). In a 
subsequent paper, we shall use these results to attempt a comprehensive assessment of 
the Kadanoff lower bound approximation. 
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Appendix. Derivation of Kadanoff criterion 

In this appendix, we show that the Kadanoff criterion (5.8) follows from (5.5). We 
observe that 

c L ( K * , P t j =  (1 - b - d ) - ' g ( K * ; P t ) ,  (A.1) 

where K* satisfies (5.6) with p = pt.  Now let KO = K* and consider a change Ap in the 
mth component of pt. Then from (5.2) 

K1= K" + um Ap + O(Ap2) 

with 

um = ( a R / a p m ) *  

and the asterisk indicating that the derivative is to be evaluated at K = K* andp = pt. 
By induction it then follows that 

K)=K*+Y/  A ~ + o ( A ~ ' )  1 = 1,2,. . . (A.4) 

Y / + I  = u m  + TYf, yo=o 64 .5 )  

where 

and the matrix T =  T(pt) is defined by (5.9). The linear recursion relation (A.5) has 
solution 

y1 = ( I +  T')Y (A.6) 

( I -  T)y = um. 64.7) 

where I is the s X s unit matrix and y satisfies 

We are now in a position to compute A$ to order (Ap)' explicitly. Substituting (A.4) 
gives 

t t  g ( K / ;  P I ,  ~ 2 , .  - .  9 ~ k - 1 3  Pm +Apt pk+1,. . . ,  p : )  

= g ( K * ;  P ' ) + ( h m  + d *  y/)Ap +O(Ap2) (A.8) 

h m  = (ag /apm)*  64.9) 

where 
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and 

d = (ag/aK)* 

is the gradient of g with respect to K. Hence 
OD 

A$=Ap 1 b- 'd (hm+y / .d )+O(Ap2) .  
1=0 

Equation (5.2) now asserts that p k  is such that 
cc 

O b m ) =  b-Id(hm +yr.  d )=O.  
1=0 

(A.lO) 

(A . l l )  

(A.12) 

Substituting (A.6) allows the sum to be evaluated. After some algebra we obtain 

O b m )  = (I - b-')>-'[h, + d .  ( b d l -  T)u,], (A.13) 

from which (5.8) follows immediately. 
This result is not of the form quoted in Kadanoff et a1 (1976). It is straightforward 

however, to show that (5.8) and equation (43) of Kadanoff et a1 are identical. To do so, 
we first note that Kadanoff et a1 incorporate the constant term g into the space of 
coupling constants, defining KO = - g .  Their linearised transform, specified by a 
(s + 1) x (s + 1) dimensional matrix B, is related to T by 

B = ($ -$) (A.14) 

This matrix has an eigenvaiue A. = bd with a trivial left eigenvector. The corresponding 
right eigenvector we write as (1, U )  and find that 

U = - d ( b d l -  7')-'. (A.15) 

Substituting this result in (A. 13) immediately reduces it to equation (43) of Kadanoff et 
al (1976). 
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